Leonardo da Vinci was the first to suggest that the adaptive advantage of the Fibonacci pattern is to maximize exposure to dew. Current thinking supports this interpretation. Phyllotactic architecture optimizes access to moisture, rainfall and sunlight.

whisperoftheshot:fuckyeahmath:




Alternate leaves will have an angle of ½ of a full rotation. In beech and hazel the angle is ⅓, in oak and apricot it is ⅖, in poplar and pear it is ⅜, and in willow and almond the angle is 5/13.[2] The numerator and denominator normally consist of a Fibonacci number and its second successor. The number of leaves is sometimes called rank, in the case of simple Fibonacci ratios, because the leaves line up in vertical rows. With larger Fibonacci pairs, the pattern becomes complex and non-repeating. This tends to occur with a basal configuration. Examples can be found in composite flowers and seed heads. The most famous example is the sunflower head. This phyllotactic pattern creates an optical effect of criss-crossing spirals. In the botanical literature, these designs are described by the number of counter-clockwise spirals and the number of clockwise spirals. These also turn out to be Fibonacci numbers. In some cases, the numbers appear to be multiples of Fibonacci numbers because the spirals consist of whorls.


via (wiki)



No comments:

Post a Comment